Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Two W/Cu/S clusters: tetraethylammonium bromidodi- μ_{2}-sulfido-sulfido[tris(3,5-dimethylpyrazol-1-yl)borato]copper(I)tungsten(VI) and tetraethylammonium dibromido- $\mu_{3^{-}}$ sulfido-di- μ_{2}-sulfido-[tris(3,5-di-methylpyrazol-1-yl)borato]dicopper(I)tungsten(VI)

Zhenhong Wei* and Xiuli You

Department of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China
Correspondence e-mail: weizh@ncu.edu.cn

Received 8 June 2011
Accepted 11 August 2011
Online 26 August 2011
The reaction of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp}^{*} \mathrm{WS}_{3}\right]\left[\mathrm{Tp}^{*}=\right.$ hydrogen $\operatorname{tris}(3,5-$ dimethylpyrazol-1-yl)borate] with one or two equivalents of CuBr afforded the $[1+1]$ and $[1+2]$ addition products $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}(\mu-\mathrm{S})_{2}(\mathrm{CuBr})\right]\left\{\right.$ or $\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{CuWBr}\left(\mathrm{C}_{15} \mathrm{H}_{22}{ }^{-}\right.\right.$ $\left.\left.\mathrm{BN}_{6}\right) \mathrm{S}_{3}\right]$, (I)\} and $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{~W}\left(\mu_{3}-\mathrm{S}\right)(\mu-\mathrm{S})_{2}(\mathrm{CuBr})_{2}\right]$ \{or $\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{Cu}_{2} \mathrm{WBr}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BN}_{6}\right) \mathrm{S}_{3}\right]$, (II) $)$. The anion of (I) contains a $\left[\mathrm{W}(\mu-\mathrm{S})_{2} \mathrm{Cu}\right]$ core formed by the addition of one CuBr unit to the $\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]$ species. The anion of (II) has a butterfly-shaped $\left[\mathrm{W}\left(\mu_{3}-\mathrm{S}\right)(\mu-\mathrm{S})_{2} \mathrm{Cu}_{2}\right]$ core formed by the addition of two CuBr units to the $\left[\mathrm{Tp}^{*} \mathrm{WS}_{3}\right]$ species. The [$\mathrm{Tp} * \mathrm{WS}_{3}$] sections of each complex exhibit approximate $C_{3 v}$ point symmetry and have closely comparable geometry. In (II), both the anion and cation lie on a crystallographic mirror plane. The structure of (I) is noncentrosymmetric and polar.

Comment

In the past decades, the chemistry of $\mathrm{Mo}(\mathrm{W}) / \mathrm{Cu} / \mathrm{S}$ clusters derived from reactions of metal sulfide synthons such as $\left[M_{x} \mathrm{~S}_{4-x}\right]^{2-}$ or $\left[\mathrm{Cp}^{*} M \mathrm{~S}_{3}\right]^{-}\left(M=\mathrm{Mo}\right.$ or $\mathrm{W}, x=0-3, \mathrm{Cp}^{*}=$ pentamethylcyclopentadienyl) with $\mathrm{Cu} X(X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NCS}$, CN) has been investigated extensively because of their novel structures (Chisholm et al., 2002; Parkin, 2004; Zulys et al., 2005) and their potential applications in biological systems (Lewinski et al., 2006) and opto-electronic materials (Vahrenkamp, 1999). Among these $\mathrm{Mo}(\mathrm{W}) / \mathrm{Cu} / \mathrm{S}$ clusters, a complete series of products obtained by the stepwise addition of $\mathrm{Cu} X$ has not previously been realized in a system involving the same components CuX and $\left[M \mathrm{~S}_{4}\right]^{2-}$ or $\left[E M \mathrm{~S}_{3}\right]^{n-}(E=\mathrm{O}$, $n=2$ or $E=\mathrm{Cp}^{*}, n=1$) in different molar ratios (Bunge et al.,

2007; Boomishankar et al., 2006; Malik et al., 1997; Kaupp et al., 1991). Recently, we have investigated the preparation of $\mathrm{Mo}(\mathrm{W}) / \mathrm{Cu} / \mathrm{S}$ clusters from the precursor $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]$, where $\mathrm{Tp}{ }^{*}=$ hydrogen tris(3,5-dimethylpyrazol-1-yl)borate (Seino et al., 2001), and this compound has been found to undergo stepwise addition reactions with one to four equivalents of CuNCS to yield the products $\left[\mathrm{Tp}^{*} \mathrm{WS}_{3}(\mathrm{CuNCS})_{n}\right]^{-}$ ($n=1$ or 2$),\left[\mathrm{Tp}^{*} \mathrm{WS}_{3}(\mathrm{CuNCS})_{3} \mathrm{Br}\right]^{2-}$ and the polymeric $\left\{\mathrm{Tp}^{*} \mathrm{WS}_{3}(\mathrm{CuNCS})_{4}\right\}^{-}$(Wei, Li, Ren et al., 2009). In a continuation of our work in this area, we treated the precursor $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]$ with one to three equivalents of CuBr in a stepwise manner (Scheme 1 shows the stepwise addition of Cu^{+}to the WS_{3} core to construct a cubane-like unit) and

Scheme 1
obtained the $[1+1]$, $[1+2]$ and $[1+3]$ products, $\left(\mathrm{Et}_{4} \mathrm{~N}\right)$ $\left[\mathrm{Tp} * \mathrm{WS}(\mu-\mathrm{S})_{2}(\mathrm{CuBr})\right], \quad\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{~W}\left(\mu_{3}-\mathrm{S}\right)(\mu-\mathrm{S})_{2}(\mathrm{CuBr})_{2}\right]$ and $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp}^{*} \mathrm{~W}\left(\mu_{3}-\mathrm{S}\right)_{3}(\mathrm{CuBr})_{3}\right]$. We have reported the crystal structure of the $[1+3]$ product previously (Wei, Li, Cheng et al., 2009). We report herein he crystal structures of the $[1+1]$ and $[1+2]$ complexes, (I) and (II).

(I)

(II)

Scheme 2
The anion of complex (I) comprises a $\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]^{-}$unit and one CuBr group, with a pair of μ-S atoms forming a $\mathrm{WS}_{2} \mathrm{Cu}$ ring (Fig. 1). One terminal S atom is retained. The structure closely resembles that of the anion in the related compound $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}(\mu-\mathrm{S})_{2}(\mathrm{CuNCS})\right]$ (Wei, Li, Ren et al., 2009). It is noteworthy that the comparable [1+1] addition complex is not known among the $M / \mathrm{Cu} / \mathrm{S}$ clusters based on the related precursor $\left[\mathrm{PPh}_{3}\right]\left[\mathrm{Cp}^{*} \mathrm{MS}_{3}\right]$, while for the $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{OMS}_{3}\right]$

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary size.

Figure 2
The molecular structure of (II), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary size. Methyl H atoms on C6, C10, C13 and C15 are disordered over the mirror plane. [Symmetry code: (i) $x,-y+\frac{3}{2}, z$.]

(I)

(II)

Figure 3
A view of the anions in (I) and (II) along the approximate threefold axis of the Tp* group. [Symmetry code: (i) $x,-y+\frac{3}{2}, z$.]
precursor, reactions with one equivalent of CuCl and CuCN have been reported to yield the products $\left[\mathrm{Me}_{4} \mathrm{~N}\right][\mathrm{WOS}(\mu$ $\mathrm{S}_{2}(\mathrm{CuCl})$] (Shamsur Rahman et al., 2000) and $\left(\mathrm{Et}_{4} \mathrm{~N}\right)$ -$\left[\operatorname{MoOS}(\mu-\mathrm{S})_{2}(\mathrm{CuCN})\right]($ Zhang et al., 2008), respectively. In (I), atom Cu 1 adopts a trigonal planar geometry, coordinated by one terminal Br atom and two $\mu-\mathrm{S}$ atoms. The $\mathrm{W} 1 \cdots \mathrm{Cu} 1$ distance of 2.5893 (11) \AA is slightly shorter than those in other butterfly-shaped or incomplete cubane core clusters. The terminal W1-S3 bond length of 2.141 (3) \AA is similar to that in $\left[\mathrm{WS}_{4} \mathrm{Cu}_{2}(\mathrm{dppm})_{3}\right][2.146(4) \AA$; dppm $=\operatorname{bis}($ diphenyl phosphino)methane; Lang \& Tatsumi, 1998], but slightly shorter than those in the corresponding precursor $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]$ (mean $2.193 \AA$; Seino et al., 2001) and in the cluster $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}(\mu-\mathrm{S})_{2}(\mathrm{CuNCS})\right][2.154$ (3) \AA; Wei, Li, Ren et al., 2009]. The mean $\mathrm{W}-\mu$-S (2.268 A), $\mathrm{Cu}-\mu-\mathrm{S}$ ($2.193 \AA$) and $\mathrm{Cu}-\mathrm{Br}[2.2831(14) \AA]$ bond lengths are slightly longer than the corresponding values in the complex $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp}^{*} \mathrm{WS}\left(\mu_{3}-\mathrm{S}\right)_{3}(\mathrm{CuBr})_{3}\right]$ (Wei, Li, Cheng et al., 2009).

The anion of complex (II) has a butterfly-shaped $\left[\mathrm{WS}_{3} \mathrm{Cu}_{2}\right]$ structure in which one $\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]$ unit and two CuBr groups are linked via one $\mu_{3}-\mathrm{S}$ and two μ-S atoms (Fig. 2). Atoms W1, S1, B1, N3, N4 and C6-C10 lie on a crystallographic mirror plane. Similar butterfly-shaped $\left[\mathrm{WS}_{3} \mathrm{Cu}_{2}\right]$ cores have been observed in $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp}^{*} \mathrm{WS}_{3}(\mathrm{CuNCS})_{2}\right]($ Wei, Li, Ren et al., 2009), $\left(\mathrm{PPh}_{4}\right)\left[\left(\mathrm{Cp} * \mathrm{WS}_{3}(\mathrm{CuCN})_{2}\right]\right.$ (Lang et al., 2004) and $\left[M O S_{3} M_{2}^{\prime}\left(\mathrm{PPh}_{3}\right)_{3}\right]\left(M=\mathrm{W}, \mathrm{Mo} ; M^{\prime}=\mathrm{Cu}, \mathrm{Ag}\right)$ (Müller et al., 1983). Each Cu atom in (II) adopts a trigonal planar geometry, coordinated by one μ-S atom, one $\mu_{3}-\mathrm{S}$ atom and one terminal Br atom. The $\mathrm{W} \cdots \mathrm{Cu}$ distance of 2.6239 (10) \AA is longer than that in complex (I), but similar to those found in other complexes containing three-coordinated Cu , such as $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}\left(\mu_{3}-\mathrm{S}\right)_{3}(\mathrm{CuBr})_{3}\right][2.6404$ (2) \AA; Wei, Li, Cheng et al., 2009] and $\left(\mathrm{PPh}_{4}\right)\left[\mathrm{Cp} * \mathrm{WS}_{3}(\mathrm{CuCN})_{2}\right][2.666$ (3) \AA; Lang et al., 2004]. Because of the coordination of the S atoms to the Cu atoms, the $\mathrm{W} 1-\mathrm{S} 1$ bond length of 2.331 (2) \AA is longer than the W1 - S2 bond length of 2.2293 (18) \AA, and both bonds are elongated relative to the mean $\mathrm{W}-\mathrm{S}$ bond length $\left(2.193 \AA\right.$) in the precursor $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]$ (Seino et al., 2001).

Fig. 3 illustrates how the S and Cu^{I} centres of (I) and (II) build up sequentially towards the corners of a cubane-like unit. Firstly, one Cu^{I} centre is added to the $\mathrm{Tp}^{*} \mathrm{WS}_{3}$ unit to construct the $\left[\mathrm{Tp}^{*} \mathrm{WS}(\mu-\mathrm{S})_{2} \mathrm{Cu}\right]$ core with one terminal S atom remaining. Secondly, the two Cu^{I} centres in (II) form the

Figure 4
A packing diagram of (I), viewed along the b axis, showing the noncentrosymmetric and polar arrangement. H atoms have been omitted.
butterfly core $\left[\mathrm{Tp} * \mathrm{~W}(\mu-\mathrm{S})_{2}\left(\mu_{3}-\mathrm{S}\right) \mathrm{Cu}_{2}\right]$. A third Cu^{I} centre can then be added to the butterfly core of (II) to produce an incomplete cubane-like unit, $\left[\mathrm{Tp} * \mathrm{~W}\left(\mu_{3}-\mathrm{S}\right)_{3} \mathrm{Cu}_{3}\right.$], as in the previously published structure $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{~W}\left(\mu_{3}-\mathrm{S}\right)_{3}(\mathrm{CuBr})_{3}\right]$ (Wei, Li, Cheng et al., 2009). Throughout this sequence, the geometry of the $\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]$ unit remains essentially unchanged: the r.m.s. deviations for overlay of the 26 non-H atoms in the core onto the precursor $\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]$ are $0.14,0.10$ and $0.30 \AA$ for (I), (II) and $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{~W}\left(\mu_{3}-\mathrm{S}\right)_{3}(\mathrm{CuBr})_{3}\right]$, respectively. The [$\mathrm{Tp} * \mathrm{WS}_{3}$] unit exhibits approximate $C_{3 v}$ point symmetry and one of the mirror planes is retained as a crystallographic symmetry element in (II).

Packing diagrams are shown for (I) and (II) in Figs. 4 and 5, respectively. The structures contain comparable stacks of alternating complexes and $\mathrm{Et}_{4} \mathrm{~N}^{+}$cations running along the b axes. In (I), these stacks are arranged so that the $\mathrm{Cu}-\mathrm{Br}$ bonds point towards the same direction along the c axis, forming a noncentrosymmetric and polar structure. In (II), the stacks are arranged in a centrosymmetric manner.

Figure 5
A packing diagram of (II), viewed along the b axis, showing the centrosymmetric arrangement. H atoms have been omitted.

Experimental

All manipulations were performed under an argon atmosphere using standard Schlenk-line techniques. The precursor $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp}^{*} \mathrm{WS}_{3}\right]$ was prepared as reported previously (Seino et al., 2001). For these reactions, CHCl_{3} is a better solvent than MeCN because CuBr is poorly soluble in CHCl_{3} and it can facilitate the stepwise introduction of CuBr into $\left[\mathrm{Tp}^{*} \mathrm{WS}_{3}\right]^{-}$. Compound (I) is air sensitive and easily oxidized in solution to form $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp}^{*} \mathrm{WO}(\mu-\mathrm{S})_{2}(\mathrm{CuBr})\right]$. Complex (II) is relatively air and moisture stable in the solid state.

For the synthesis of (I), $\mathrm{CuBr}(14.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added to a solution of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp}^{*} \mathrm{WS}_{3}\right](75 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{ml})$. After being stirred for half an hour, the resulting red solution was filtered and $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ was carefully layered onto the surface of the filtrate. After 4 d , red prisms of (I) were collected by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo \{yield $72.3 \mathrm{mg}, 80 \%$ based on $\left.\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]\right\}$. Analysis calculated: C 32.46, H 4.98, N 11.52%; found C 32.32, H 4.55, N 11.95\%. IR (KBr disc, cm^{-1}): 2978 (m), 2920 $(m), 2554(w), 1628(w), 1546(s), 1440(s), 1435(s), 1418(s), 1035(m)$, $860(w), 806(w), 691(w), 651(w), 459(m), 416(w)$. UV-visible $\left\{\mathrm{MeCN}, \lambda_{\max }\left[\mathrm{nm}\left(\varepsilon M^{-1} \mathrm{~cm}^{-1}\right)\right]\right\}: 333$ (14300), 445 (6400), 524 (3000). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.36-1.40\left(t, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.37(s$, $9 \mathrm{H}, \mathrm{CH}_{3}$ in $\left.\mathrm{Tp}^{*}\right), 2.95\left(s, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ in $\left.\mathrm{Tp}^{*}\right), 3.33-3.39(q, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.94\left(s, 3 \mathrm{H}, \mathrm{CH}\right.$ in $\left.\mathrm{Tp}^{*}\right)$, the $\mathrm{B}-\mathrm{H}$ proton was not identified.

For the synthesis of (II), $\mathrm{CuBr}(28.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to a solution of $\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}_{3}\right](75 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{ml})$. A procedure identical to that used for (I) afforded dark red blocks of (II) \{yield $93 \mathrm{mg}, 85 \%$ based on $\left.\left(\mathrm{Et}_{4} \mathrm{~N}\right)\left[\mathrm{Tp} * \mathrm{WS}_{3}\right]\right\}$. Analysis calculated: C 27.78 , H 4.26, N 9.86%; found: C 27.32 ; H 4.55; N 9.95%. IR (KBr disc, cm^{-1}): 2979 (m), 2921 (m), $2554(w), 1628(w), 1546(s)$, 1440 (s), 1435 (s), 1418 (s), 1035 (m), $860(w), 806(w), 693(w), 651$ (w), $469(w), 420(w)$. UV-visible $\left\{\mathrm{MeCN}, \lambda_{\max }\left[\mathrm{nm}\left(\varepsilon M^{-1} \mathrm{~cm}^{-1}\right)\right]\right\}$: 323 (16300), 420 (8890), 544 (5800). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 1.36-1.40\left(t, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.37\left(s, 9 \mathrm{H}, \mathrm{CH}_{3}\right.$ in $\left.\mathrm{Tp}^{*}\right), 2.96(s, 9 \mathrm{H}$, CH_{3} in $\left.\mathrm{Tp}^{*}\right), 3.31-3.38\left(q, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.92\left(s, 3 \mathrm{H}, \mathrm{CH}\right.$ in $\left.\mathrm{Tp}^{*}\right)$, the $\mathrm{B}-\mathrm{H}$ proton was not identified.

Compound (I)

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{CuWBr}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BN}_{6}\right) \mathrm{S}_{3}\right]$
$V=3196.6(11) \AA^{3}$
$M_{r}=850.95$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=19.058$ (4) Å
$b=10.276$ (2) \AA
$c=16.323(3) \AA$

Data collection

Rigaku Mercury CCD diffractometer
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.147, T_{\text {max }}=0.239$

Refinement

$$
\begin{array}{ll}
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038 & \Delta \rho_{\max }=1.05 \mathrm{e} \AA^{-3} \\
w R\left(F^{2}\right)=0.084 & \Delta \rho_{\min }=-0.59 \mathrm{e} \AA^{-3} \\
S=1.10 & \text { Absolute structure: Flack (1983), } \\
5710 \text { reflections } & \text { 2678 Friedel pairs } \\
344 \text { parameters } & \text { Flack parameter: } 0.004(10) \\
84 \text { restraints } &
\end{array}
$$

H -atom parameters constrained

$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=5.73 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.35 \times 0.30 \times 0.25 \mathrm{~mm}$

29584 measured reflections 5857 independent reflections 5342 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

Compound (II)

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{20} \mathrm{~N}\right)\left[\mathrm{Cu}_{2} \mathrm{WBr}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BN}_{6}\right) \mathrm{S}_{3}\right]$	$V=3401.7(12) \AA^{3}$
$M_{r}=994.40$	$Z=4$
Orthorhombic, Pnma	Mo $K \alpha$ radiation
$a=12.808(3) \AA$	$\mu=7.17 \mathrm{~mm}^{-1}$
$b=11.768(2) \AA$	$T=293 \mathrm{~K}$
$c=22.569(5) \AA$	$0.40 \times 0.30 \times 0.17 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD
diffractometer
Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\text {min }}=0.087, T_{\text {max }}=0.295$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.120$
$S=1.09$
3276 reflections
206 parameters

H-atom parameters constrained
$\Delta \rho_{\max }=1.48 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-1.15 \mathrm{e}^{-3}$

H atoms were placed geometrically and constrained to ride on their parent atoms, with $\mathrm{B}-\mathrm{H}=0.98 \AA$ and $\mathrm{C}-\mathrm{H}=0.96$ (methyl), 0.97 (methylene) or $0.93 \AA$ (aromatic), and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms or $1.2 U_{\text {eq }}(\mathrm{C})$ otherwise. In (I), extensive rigidbond and similarity restraints were applied to the displacement parameters of atoms C4, C5, C9, C10, N7 and C16-C23. In (II), the methyl H atoms on C 6 and C 10 (in the pyrazole ring) and on C 13 and C 15 (in the $\mathrm{Et}_{4} \mathrm{~N}^{+}$cation) are disordered over the mirror plane.

For both compounds, data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge the Education Department of Jiangxi Province (grant No. GJJ11033) for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BI3020). Services for accessing these data are described at the back of the journal.

References

Boomishankar, R., Richards, P. I. \& Steiner, A. (2006). Angew. Chem. Int. Ed. 45, 4632-4634.
Bunge, S. D., Lance, J. M. \& Bertke, J. A. (2007). Organometallics, 26, 6320-6328.
Chisholm, M. H., Gallucci, J. \& Phomphrai, K. (2002). Inorg. Chem. 41, $2785-$ 2794.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Kaupp, M., Stoll, H., Preuss, H., Kaim, W., Stahl, T., Van Koten, G., Wissing, E., Smeets, W. J. J. \& Spek, A. L. (1991). J. Am. Chem. Soc. 113, 5606-5618.
Lang, J. P. \& Tatsumi, K. (1998). Inorg. Chem. 37, 6308-6316.
Lang, J. P., Xu, Q. F., Ji, W., Elim, H. I. \& Tatsumi, K. (2004). Eur. J. Inorg. Chem. pp. 86-91.
Lewinski, J., Sliwinski, W., Dranka, M., Justyyniak, I. \& Lipkowski, J. (2006). Angew. Chem. Int. Ed. 45, 4826-4829.
Malik, M. A., O’Brien, P., Motevalli, M. \& Jones, A. C. (1997). Inorg. Chem. 36, 5076-5081.
Müller, A., Schimanski, U. \& Schimanski, J. (1983). Inorg. Chim. Acta, 76, 245246.

Parkin, G. (2004). Chem. Rev. 104, 699-767.
Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Seino, H., Arai, Y., Iwata, N., Nagao, S., Mizobe, Y. \& Hidai, M. (2001). Inorg. Chem. 40, 1677-1682.
Shamsur Rahman, A. B. M., Boller, H. \& Klepp, O. K. (2000). Inorg. Chim. Acta, 305, 91-94.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Vahrenkamp, H. (1999). Acc. Chem. Res. 32, 589-596.
Wei, Z. H., Li, H. X., Cheng, M. L., Tang, X. Y., Zhang, Y. \& Lang, J. P. (2009). Inorg. Chem. 48, 2808-2817.
Wei, Z. H., Li, H. X., Ren, Z. G., Lang, J. P., Zhang, Y. \& Sun, Z. R. (2009). Dalton Trans. pp. 3425-3433.
Zhang, W. H., Song, Y. L., Zhang, Y. \& Lang, J. P. (2008). Cryst. Growth Des. 8, 253-258.
Zulys, A., Dochnahl, M., Hollmann, D., Lohnwitz, K., Herrmann, J.-S., Roesky, P. W. \& Blechert, S. (2005). Angew. Chem. Int. Ed. 44, 7794-7798.

